Virus-like particles expressing the nucleocapsid gene as an efficient vaccine against Rift Valley fever virus.

نویسندگان

  • Andreas Pichlmair
  • Matthias Habjan
  • Hermann Unger
  • Friedemann Weber
چکیده

Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, regularly accounts for large and severe outbreaks among humans and livestock in Africa and Arabia. Therefore, safe and efficient vaccines are highly needed. Here, we report the production of recombinant virus-like particles (VLPs) that, in addition to their similarity to RVFV particles, are able to express the viral nucleocapsid (N) gene. A single inoculation of 1 × 10(6) of these N-VLPs was sufficient to protect 100% of mice from infection with a lethal dose of 1 × 10(5) PFU of RVFV. Our study demonstrates that N-VLPs can be considered as a safe and efficient vaccine against the emerging pathogen RVFV, and that VLPs that actively produce a viral antigen may be considered a strategy to improve the immunogenicity of VLPs in general.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient production of Rift Valley fever virus-like particles: The antiviral protein MxA can inhibit primary transcription of bunyaviruses.

Rift Valley fever virus (RVFV) is a highly pathogenic member of the family Bunyaviridae that needs to be handled under biosafety level (BSL) 3 conditions. Here, we describe reverse genetics systems to measure RVFV polymerase activity in mammalian cells and to generate virus-like particles (VLPs). Recombinant polymerase (L) and nucleocapsid protein (N), expressed together with a minireplicon RNA...

متن کامل

Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA

The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The ...

متن کامل

Generation and characterization of monoclonal antibodies against Rift Valley fever virus nucleoprotein.

Due to the unpredictable and explosive nature of Rift Valley fever (RVF) outbreaks, rapid and accurate diagnostic assays for low-resource settings are urgently needed. To improve existing diagnostic assays, monoclonal antibodies (MAbs) specific for the nucleocapsid protein of RVF virus (RVFV) were produced and characterized. Four IgG2a MAbs showed specific binding to denatured nucleocapsid prot...

متن کامل

Vaccination with DNA Plasmids Expressing Gn Coupled to C3d or Alphavirus Replicons Expressing Gn Protects Mice against Rift Valley Fever Virus

BACKGROUND Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. METHODOLOGY/PRINCIPAL FINDINGS We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone o...

متن کامل

A Novel System for Identification of Inhibitors of Rift Valley Fever Virus Replication

Rift Valley fever virus (RVFV) is a human and livestock pathogen endemic to sub-Saharan Africa. We have developed a T7-dependent system for the efficient production of RVFV-like particles (RVF-VLPs) based on the virulent ZH-501 strain of RVFV. The RVF-VLPs are capable of performing a single round of infection, allowing for the study of viral replication, assembly, and infectivity. We demonstrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vector borne and zoonotic diseases

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2010